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Abstract

A Lagrange-multiplier-based ®ctitious-domain method (DLM) for the direct numerical simulation of
rigid particulate ¯ows in a Newtonian ¯uid was presented previously. An important feature of this ®nite
element based method is that the ¯ow in the particle domain is constrained to be a rigid body motion
by using a well-chosen ®eld of Lagrange multipliers. The constraint of rigid body motion is represented
by u � U � ooo� r; u being the velocity of the ¯uid at a point in the particle domain; U and o are the
translational and angular velocities of the particle, respectively; and r is the position vector of the point
with respect to the center of mass of the particle. The ¯uid±particle motion is treated implicitly using a
combined weak formulation in which the mutual forces cancel. This formulation together with the
above equation of constraint gives an algorithm that requires extra conditions on the space of the
distributed Lagrange multipliers when the density of the ¯uid and the particles match. In view of the
above issue a new formulation of the DLM for particulate ¯ow is presented in this paper. In this
approach the deformation rate tensor within the particle domain is constrained to be zero at points in
the ¯uid occupied by rigid solids. This formulation shows that the state of stress inside a rigid body
depends on the velocity ®eld similar to pressure in an incompressible ¯uid. The new formulation is
implemented by modifying the DLM code for two-dimensional particulate ¯ows developed by others.
The code is veri®ed by comparing results with other simulations and experiments. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Direct numerical simulation of the motion of rigid bodies in a ¯uid can be applied in
numerous settings; e.g. sedimenting and ¯uidized suspensions, lubricated transport, hydraulic
fracturing of reservoirs, slurries etc. The capability of simulating the motion of large numbers
of particles in a ¯uid is important for predicting the e�ective properties of the particulate
mixture in such applications.
Hu et al. (1992), Hu (1996) and Johnson and Tezduyar (1996, 1997) developed ®nite element

methods based on unstructured grids to simulate the motion of large numbers of rigid particles
in two and three dimensions in a Newtonian ¯uid. Hu (1996) treats the ¯uid±particle motion
implicitly by using a combined weak formulation of Hesla (1991). The method of Hu et al.
(1992) for a Newtonian suspending ¯uid was ®rst extended for static simulation of particles in
a viscoelastic ¯uid by Huang and Feng (1995). The same scheme was later extended by them to
enable dynamic simulation of particles, the ®rst results of which were presented by Feng et al.
(1996). Hu (1996) further improved their scheme. Recent results of dynamic simulation of
particles in a viscoelastic ¯uid can be found in the papers by Huang et al. (1997, 1998). Their
numerical scheme has been described in detail by Patankar (1997) and the simulation results
for about 100 particles in two dimensions in an Oldroyd-B ¯uid were also reported there.
Glowinski et al. (1999, 1998) presented a Lagrange-multiplier-based ®ctitious-domain

method (DLM) for the direct numerical simulation of the motion of large numbers of rigid
particles in a Newtonian ¯uid. Their ®nite element formulation permits the use of a ®xed
structured grid. This eliminates the need for remeshing the domain which is necessary in the
unstructured grid based methods. Structured grids also allow the use of fast and e�cient
solvers. A recent three-dimensional calculation of the ¯uidization of 1204 spheres by Pan can
be found at the web site http://www.aem.umn.edu/Solid-Liquid_Flows. Singh et al. (1999)
extended this method to simulate the motion of rigid particles in an Oldroyd-B ¯uid.
In the DLM method the ¯ow in the particle domain is constrained to be a rigid body

motion using a ®eld of Lagrange multipliers. The constraint of rigid body motion is
represented by

u � U � ooo� r, �1�
u being the velocity of the ¯uid at a point in the particle domain; U and ooo are the
translational and angular velocities of the particle, respectively; and r is the position vector of
the point with respect to the center of mass of the particle. The ¯uid±particle motion is treated
implicitly using a combined weak formulation of Hesla (1991) in which the mutual forces
cancel. This formulation and the above equation of constraint were the key features of the
DLM method of Glowinski et al. (1999). They stated that the resulting algorithm as presented
by them could not be used directly if the particles were neutrally buoyant; however, it could be
made to work by adding extra conditions to the space of the distributed Lagrange multipliers.
Extension of this formulation to three dimensions with irregularly shaped bodies requires that
another term �ooo� Ipooo, where Ip is the moment of inertia tensor) must be added to the angular
momentum equation for particles in the coupled particle±¯uid system of equation.
In this paper, we address the above issues by presenting a new DLM formulation for

particulate ¯ow. It was recognized by Hesla (1997) that, in the DLM method of Glowinski et
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al. (1999) the translational and angular velocities of the particles appear as ``extra unknowns'',
in some sense, in addition to the velocity ®eld u inside the particles, even though they are
completely determined in terms of u: Hence, he suggested that U and ooo be eliminated as
independent unknowns at the outset by replacing them by the respective classical mechanical
integral expressions in terms of u: This suggestion if implemented gives rise to an algorithm
that can be used in the density matched case without extra conditions on the space of the
distributed Lagrange multipliers. In this paper we present an approach in which the
deformation rate tensor within the particle domain is constrained to be zero in order to impose
the rigid body motion. This eliminates U and ooo as variables from the coupled system of
equations and at the same time is much easier to implement, numerically, compared to the
suggestion of Hesla (1997). The resulting algorithm in our approach requires no extra
conditions for the density matched case. Physical interpretation of the formulation will be
explained in the next section. We will then present some details of the numerical
implementation of the new formulation. We implemented this formulation by modifying the
DLM code for two-dimensional particulate ¯ows developed by Singh et al. (1999). Finally, we
will verify the code through some known test cases.

2. Mathematical formulation

2.1. Strong form

Let O be the computational domain which includes both the ¯uid and the particle domain.
Let P(t ) be the particle domain. Let the ¯uid boundary not shared with the particle be denoted
by G: For simplicity we will assume that a Dirichlet boundary condition is imposed on G and
that there is only one particle in the computational domain. We note that the formulation can
be easily generalized beyond these assumptions. The body force will also be assumed to be
constant so that there is no net torque acting on the particles. The governing equations for
¯uid motion are given by:

rf

�
@u

@t
� �u � r�u

�
� r � sss� rhofg in OnP�t�, �2�

r � u � 0 in OnP�t�, �3�

u � uG�t� on G, �4�

u � ui on @P�t�, �5a�

sss � n � t on @P�t�, �5b�

ujt�0 � u0�x� in OnP�0�, �6�
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where rf is the ¯uid density, u is the ¯uid velocity, g is the acceleration due to gravity, n is the
outward normal on the particle surface, ui is the velocity at ¯uid±particle interface @P�t� and sss
is the stress tensor. The initial velocity u0 should satisfy Eq. (3). The boundary velocity in Eq.
(4) should satisfy the compatibility condition due to Eq. (3). For an incompressible ¯uid the
divergence-free constraint (3) gives rise to pressure in the ¯uid. The stress tensor is then given
by:

sss � ÿpI � ttt, �7�
where I is the identity tensor, p is the pressure and ttt is the extra stress tensor. For a
Newtonian ¯uid, ttt represents the viscous stress, whereas for a viscoelastic ¯uid it represents the
viscous and the elastic stress in the ¯uid. Extra stress depends on the deformation rate of the
¯uid at a given location. In a viscoelastic ¯uid it also depends on the history of deformation.
Particle motions can be represented in terms of translational and angular velocities using

Newton's second law. In the present formulation, we treat the particle as a ¯uid subjected to
an additional rigidity constraint. The governing equations for particle motion are then given
by:

rs

�
@u

@t
� �u � r�u

�
� r � sss� rsg in P�t�, �8�

r � u � 0 in P�t�, �9�

D�u� � 1

2

ÿ
ru� ruT

�
� 0 in P�t�, �10�

u � ui on @P�t�, �11a�

sss � n � t on @P�t�, �11b�

ujt�0 � u0�x� in P�0�, �12�
where rs is the particle density. Rigidity constraint (10) has been used before by Joseph and
Lundgren (1990) to derive the ensemble averaged two-¯uid equations for ¯owing composites of
solid particles in a liquid. The initial velocity u0 should satisfy Eq. (10). The rigidity constraint
(10) ensures that the velocity ®eld is divergence-free. Hence, Eq. (9) is a redundant equation.
We nevertheless choose to keep this constraint since it will be required in the DLM
formulation to be presented later. As noted earlier, Eq. (9) gives rise to a pressure ®eld in the
particle domain. Similarly, the rigidity constraint (which is a tensor constraint) gives rise to a
stress ®eld L (which is a symmetric second-order tensor). Variational analysis of the above
equations shows that the pressure and L are nothing but distributed Lagrange multipliers due
to the divergence-free and rigidity constraints, respectively. This will become evident in the
weak form to be presented in the next section. L is an additional stress ®eld required inside the
particle domain to maintain the rigid-body motion. A similar interpretation of the Lagrange
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multiplier in terms of additional body force per unit volume was given by Glowinski et al.
(1999). Stress inside the particle is then given by:

sss � ÿpI � L� ttt: �13�
ttt can considered to be zero inside the particle domain since the deformation inside a rigid
particle is always zero. The pressure term will not arise if Eq. (9) is not used.
On using Eq. (10) to apply the rigidity constraint we obtain a Lagrange multiplier L with six

scalar variables in the three-dimensional case. This is because Eq. (10) represents six scalar
constraint equations at a point. A reformulation of Eq. (10) can reduce the number of
Lagrange multiplier variables to three. To this end we note that rigidity constraint can also be
implemented by imposing:

r � �D�u�� � 0 in P�t�, �14�

D�u� � n � 0 on @P�t�, �15�
where (14) and (15) represent the three scalar constraint equations at a point. As a result L is
no longer the Lagrange multiplier itself. It remains the stress ®eld inside the particle due to the
rigidity constraint. It can be represented in terms of a Lagrange multiplier lll by an expression
to be derived in the next section. The expression is

L � D�lll�, �16�
where lll is a vector with three scalar components in a three-dimensional case.
The idea of computing the motion inside the particle as a (rigid) velocity ®eld u produced by

a certain (symmetric) stress tensor ®eld sss was proposed by Hesla (1995). In Hesla's method,
the entire stress tensor sss inside the particle is postulated as D�fff�, where fff is an unknown
vector ®eld satisfying the inhomogeneous equation (23), to be presented later, with lll replaced
by fff: A ®nite-element code implementing Hesla's method is currently under development. We
note that in the present approach the form for stress inside a rigid solid given by Eq. (16) is an
outcome of the rigidity constraint (Eqs. (14) and (15)) and is not postulated as in the approach
of Hesla (1995). This derivation will be presented next.

2.2. Weak form

In the following derivation we will consider the two-dimensional case. To obtain the weak
form of the governing equations of the ¯uid we use the traction boundary condition on the
¯uid±particle interface. We de®ne the solution space for velocity in the ¯uid domain as

VuG�t� �
n

uju 2 H 1
ÿ
OnP�t�

�2
, u � uG�t� on G

o
and the variation space for the velocity as

V0�t� �
n

vjv 2 H 1
ÿ
OnP�t�

�2
, v � 0 on G

o
:
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The solution space for pressure is

L2
0

ÿ
OnP�t�

�
�
(
q 2 L2

ÿ
OnP�t�

�
j
�
OnP�t�

q dx � 0

)
:

The weak formulation for the ¯uid phase is:�
OnP�t�

rf

�
@u

@t
� �u � r�uÿ g

�
� v dx�

�
OnP�t�

sss:D�v� dx�
�
@P�t�
�sss � n� � v dx

�
�
OnP�t�

q�r � u� dx � 0, 8v 2 V0 and q 2 L2
ÿ
OnP�t�

�
:

�17�

To obtain the weak form of the particle equations we use the traction boundary condition as
before. As a ®rst step we impose the rigidity constraint in the solution and variation space for
velocity in the particle domain. It is given by

VP�t� �
�
vjv 2 H 1�P�t��2, D�v� � 0 in P�t�

	
:

For u 2 VP�t� and p 2 L2
0 �P�t�� the weak formulation for the particle phase becomes:�

P�t�
rs

�
@u

@t
� �u � r�uÿ g

�
� v dxÿ

�
P�t�

p�r � v� dxÿ
�
@P�t�
�sss � n� � v dx

�
�
P�t�

q�r � u� dx � 0, 8v 2 VP and q 2 L2�P�t��:
�18�

As in the approach of Glowinski et al. (1999) we relax the constraint in the velocity space VP�t�
by enforcing it in a weak sense as a side constraint. The weak form of the constraint equation
can be taken to be the weak form of Eqs. (14) and (15). It is given by�

P�t�
D�mmm�:D�u� dx � 0, 8mmm 2 H 1�P�t��2, �19�

where u 2 H 1�P�t��2: Using Eq. (19) requires the addition of an appropriate distributed
Lagrange multiplier lll in Eq. (18). The modi®ed weak formulation for the particle phase becomes�

P�t�
rs

�
@u

@t
� �u � r�uÿ g

�
� v dxÿ

�
P�t�

p�r � v� dx�
�
P�t�

D�lll�:D�v� dxÿ
�
@P�t�
�sss � n� � v dx

�
�
P�t�

q�r � u� dx�
�
P�t�

D�mmm�:D�u� dx � 0, 8v 2 H 1�P�t��2, mmm 2 H 1�P�t��2

and q 2 L2�P�t��,

�20�

where u 2 H 1�P�t��2, lll 2 H 1�P�t��2 and p 2 L2
0 �P�t��: It can be veri®ed that the strong form of

Eq. (20) is represented by Eqs. (8)±(10) and (13)±(16). As stated before, Eq. (16) is obtained due
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the imposition of rigidity constraint (19). Physically one may perceive the stress L in a rigid body
to be similar to pressure in an incompressible ¯uid. In the DLM formulation of Glowinski et al.
(1999) various forms of constraint equations were suggested. For the present formulation we see
that Eq. (19) is the most suitable form of the constraint equation.
Adding Eqs. (17) and (20), using the interface conditions (5) and (11) and noting that the

extra stress ttt (modeled as a function of the deformation rate or the deformation history) is
zero inside a rigid body we get the following combined weak form of the problem:
For t > 0, ®nd u 2WuG, p 2 L2

0 �O�, lll 2 H 1�P�t��2 satisfying�
O
rf

�
@u

@t
� �u � r�uÿ g

�
� v dxÿ

�
O
p�r � v� dx�

�
O
q�r � u� dx�

�
O
ttt:D�v� dx

�
�
P�t�
�rs ÿ rf �

�
@u

@t
� �u � r�uÿ g

�
� v dx�

�
P�t�

D�lll�:D�v� dx�
�
P�t�

D�mmm�:D�u� dx

� 0, 8v 2W0, mmm 2 H 1�P�t��2 and q 2 L2�O�,

�21�

where

WuG�t� �
n

vjv 2 H 1�O�2, v � uG�t� on G
o
,

W0�t� �
n

vjv 2 H 1�O�2, v � 0 on G
o
,

L2
0
�O� �

�
q 2 L2�O�j

�
O
q dx � 0

�
:

The initial conditions are given by Eqs. (6) and (12). The ¯uid±particle interface condition is
internal to the combined system. Hence, there are no explicit interface force or velocity terms
in Eq. (21). We note that the particle translational and angular velocities are not present in the
combined form (21) unlike the original DLM formulation of Glowinski et al. (1999). This is
especially convenient in a three-dimensional case with irregularly shaped bodies for which there
is added complexity due to the nonlinear nature of the angular momentum equations. The
above formulation is due to the ®rst author.

2.3. An alternate strong form

The third author has proposed that one can rewrite the strong form presented in Section 2.1
for given velocity and position of the particles. We can extract the following problems for u
and lll on OnP�t� and P(t ), given U�t� and ooo�t� and the translational and angular positions of
the particles:

rf

�
@u

@t
� �u � r�u

�
� ÿrp� r � ttt� rfg in OnP�t�,
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r � u � 0 in OnP�t�,

u � uG�t� on G,

u � U � ooo� r on @P�t� �22�
and

r �
�
D�lll�

�
� rs

�
dU

dt
� dooo

dt
� r� ooo� �ooo� r� ÿ g

�
in P�t�,

n �
�
D�lll�

�
s� n � � ÿ pI � ttt�f on @P�t�, �23�

where we have not de®ned pressure in the particle domain since it is redundant in the presence
of stress due to lll, and ttt in the particle domain is taken to be zero. Thus the stress in the
particle is only due to the Lagrange multiplier lll: We have used Eq. (1) in order to derive Eq.
(23) from Eq. (8). In the second part of Eq. (23), the left-hand side is evaluated in the particle
domain and the right-hand side is evaluated in the ¯uid domain. Initial conditions are the same
as given before. These are solvable Dirichlet and Neumann problems which are decoupled for
any speci®ed motion of the particles. The strong form in Eqs. (22) and (23) can form a basis
for a new computational scheme. In such a scheme the ¯uid domain can be extended to
include the particle domain. Eq. (23) then ensures that the region occupied by the particles
move rigidly. Hesla's (Hesla, 1995) scheme, mentioned earlier, is based on essentially the same
set of strong equations. In the present work, the above strong form is not considered in the
numerical implementation.

3. Numerical scheme

The new formulation is implemented by modifying the DLM code for two-dimensional
particulate ¯ows developed by Singh et al. (1999). Their code can simulate rigid particulate
¯ows in Newtonian as well as viscoelastic ¯uids. To highlight the modi®cation of their code we
will consider the suspending ¯uid to be Newtonian. The particles are assumed to be circular so
that the angular motion of the particles need not be considered. Singh et al. (1999) use the
Marchuk±Yanenko operator splitting scheme for time discretization. The modi®ed algorithm
based on this scheme is:

1. Calculate particle velocity: Given un and P�tn�, ®nd the translational velocity, Un, of the
particle:

Un � 1

M

�
P�tn �

rsu
n dx, �24a�

where M is the mass of the particle. For a non-circular particle it is necessary to update the
angular position of the particle. Angular velocity, ooon, of the particle is then calculated by
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Ipooon �
�
P�tn �

r� rsu
n dx, �24b�

where Ip is the moment of inertia of the particle.
2. Explicit update of particle position: Compute Xn�1 by the following procedure:

Set Xn�1, 0 � Xn:
do k � 1, K

X
�n�1, k � Xn�1, kÿ1 �

�
Un � Unÿ1

2

��
Dt
K

�
�25�

Xn�1, k � X
�n�1, k �Mÿ1

�
F�Xn�1, kÿ1� � F�X�n�1, k�

2

��Dt�2
2K 2

�26�

enddo
Set Xn�1 � Xn�1, K, this also gives P�tn�1�:
Set

An�1
c � 2

�Dt�2
�

Xn�1 ÿ Xn ÿ
�

Un � Unÿ1

2

�
Dt

�
, �27�

where F denotes the collision force acting on the particles to prevent them from
penetrating each other or the walls of the domain. Modeling of this force in the present
scheme is the same as that of Glowinski et al. (1999). More details can be found therein.
Ac is the acceleration of the particle due to collision. This term provides an additional
body force acting on the particle and is included in the combined momentum equation to
be solved in the subsequent steps. This explicit update scheme is similar although not
identical to that used by Hu (1996) in the present version of his code. In his scheme the
calculation of F is done di�erently. Glowinski et al. (1999) and Singh et al. (1999) did not
use explicit update scheme.

3. Fractional step 1: Find un�1=3 2WuG�tn�1� and pn�1=3 2 L2
0 �O� satisfying�

O
rf

�
un�1=3 ÿ un

Dt
ÿ g

�
� v dxÿ

�
O
pn�1=3�r � v� dx�

�
O
q�r � un�1=3� dx

� a
�
O
2ZD�un�1=3 �:D�v� dx � 0, 8v 2W0 and q 2 L2�O�:

�28�

4. Fractional step 2: Find un�2=3 2WuG�tn�1� satisfying�
O
rf

�
un�2=3 ÿ un�1=3

Dt
� �un�2=3 � r�un�2=3

�
� v dx� b

�
O
2ZD�un�2=3 �:D�v� dx � 0,

8v 2W0:

�29�
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5. Fractional step 3: Find un�1 2WuG�tn�1� and llln�1 2 H 1�P�tn�1��2 satisfying

�
O
rf

�
un�1 ÿ un�2=3

Dt

�
� v dx� g

�
O
2ZD�un�1 �:D�v� dxÿ

�
P�tn�1 �

rsA
n�1
c � v dx

�
�
P�tn�1 �

D
�
llln�1

�
:D�v� dx�

�
P�tn�1 �

D�mmm�:D�un�1 � dx�
�
P�tn�1 �

�rs ÿ rf �
�

un�1 ÿ un

Dt

� �un�2=3 � r�un�2=3 ÿ g

�
� v dx � 0, 8v 2W0 and mmm 2 H 1

�
P�tn�1�

�2
:

�30�

ttt is replaced by the Newtonian stress and is split into the three fractional steps such that a�
b� g � 1: In our simulations we set a � b � 0:5, g � 0 and viscosity of the Newtonian ¯uid is
constant. We use linear interpolation for projection between the ¯uid and particle meshes
which is necessary in the last fractional step. The above is a ®rst-order time discretization
scheme. In case of a viscoelastic suspending ¯uid the above algorithm can be extended as per
the details provided by Singh et al. (1999). In the present work the viscoelastic ¯uid model has
been implemented. The ®rst fractional step is the classical Stokes-like problem and is solved
using a conjugate gradient method. Note that it is essential to have a pressure variable in the
particle domain to get the classical Stokes problem in this step. This explains why constraint
(9) was retained in the particle equations although it was redundant in the presence of the
rigidity constraint. Fractional step two de®nes a nonlinear problem for velocity which is solved
by using a least squares conjugate gradient algorithm. For details of these methods see Bristeau
et al. (1987). Fractional step three is solved by a Uzawa conjugate gradient algorithm similar
to that used by Glowinski et al. (1999). Details of this will not be repeated here.
We see from Eq. (30) that the algorithm as presented can also be used when the ¯uid and

particle densities match. The above system of equations has been solved by using the Galerkin
®nite element method. A structured triangular ®nite element mesh is used, where the pressure is
de®ned on a ``twice-coarser'' mesh. Linear shape functions are used (see Glowinski et al., 1999
or Singh et al., 1999 for details). A separate mesh, on which the Lagrange multiplier is de®ned,
is used within the particle domain. Glowinski et al. (1999) had mentioned that in their DLM
formulation a particle mesh that is coarser than the velocity mesh was good for stability or
enhancing the conditioning of the algebraic system. They reported that this followed from
general results on the approximation of generalized saddle-point problems. Although it is likely
that the present formulation is subject to similar conditions, a comparison of the stability
behavior of the present formulation and the pervious DLM formulation needs to be done. In
this work we have chosen to use the same coarse mesh in the particle domain as that used by
Singh et al. (1999). Use of a particle mesh of the same size as that of velocity can enhance the
accuracy of the solution inside and near the particle domain. We intend to study the stability
of this formulation under such condition in future. There is no additional computational cost
in the present formulation as compared to the previous formulation.
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4. Results

We will validate the code by presenting results of sedimentation of two circular particles in a
Newtonian ¯uid. We consider a channel 2 cm wide (x-direction) and 8 cm tall ( y-direction).
The ¯uid viscosity is 0.01 g/cm s and the density is 1 g/cm3. The particle density is 1.01 g/cm3

and their radius is 0.1 cm. Gravity acts in the negative y-direction. The simulation is started at
t � 0 s by dropping the two particles at the center of the channel at a height of 7.2 and 6.8 cm.
We perform simulations at two di�erent time step and for two di�erent mesh sizes. This case is
identical to the one presented by Singh et al. (1999).
It is known that two particles dropped close to each other in a Newtonian ¯uid will undergo

drafting, kissing and tumbling (Fortes et al., 1987). Numerical results in Fig. 1 agree well with

Fig. 1. Numerical simulation of drafting, kissing and tumbling of particles sedimenting in a Newtonian ¯uid.
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Fig. 2. Time history of (a) x-coordinate of particle centers, (b) y-coordinate of particle centers, (c) x-component of translational velocity and (d) y-
component of translational velocity for Case A (solid lines) and Case B (dashed lines).
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Fig. 3. Time history of (a) x-coordinate of particle centers, (b) y-coordinate of particle centers, (c) x-component of translational velocity and (d) y-
component of translational velocity for Case B (dashed lines) and Case C (solid lines).

N
.A
.
P
a
ta
n
k
a
r
et

a
l./

In
tern

a
tio

n
a
l
J
o
u
rn
a
l
o
f
M
u
ltip

h
a
se

F
lo
w
2
6
(
2
0
0
0
)
1
5
0
9
±
1
5
2
4

1
5
2
1



this observation. This simulation (Case A) has a velocity mesh size of 1/96 cm, pressure mesh
size of 1/48 cm and the particle mesh size of 1/64 cm. The time step is 0.01 s. Results of
another simulation (Case B) with a time step of 0.005 s are compared to those of Case A in
Fig. 2. It is seen that the two cases are in good agreement until kissing and tumbling begins.
This is because tumbling is essentially a breakup of an unstable con®guration of the particle
positions (Fortes et al., 1987). After tumbling is complete the particles continue to fall at
locations away from the center of the channel at a constant speed. Fig. 2(d) shows that this
terminal speed is the same in both the cases presented. There is greater agreement between the
results if smaller time steps are used in the comparison. In Fig. 2 we wish to emphasize that
the scheme gives good results even at comparatively larger time steps. We also note that the

Fig. 4. Locations of eleven particles sedimenting in an Oldroyd B ¯uid at (a) t � 0 s and (b) t � 20 s.
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overall qualitative behavior in both the cases is identical. This is important to ensure the same
macroscopic behavior of the ¯uid particle mixture when the motion of large numbers of
particles is simulated.
Results of Case B are also compared with another simulation (Case C) with a time step

equal to 0.005 s, velocity mesh size of 1/144 cm, pressure mesh size of 1/72 cm and particle
mesh size of 1/96 cm. Fig. 3 shows that these two cases are also in good agreement.
The above results are for the case of a Newtonian suspending ¯uid. The present code can

also simulate the motion of particles in an Oldroyd B ¯uid. Particles falling in a viscoelastic
¯uid have a tendency to form chains (Joseph and Liu, 1993). This behavior was simulated by
Huang et al. (1998) and Patankar (1997). To verify that the present code reproduces this
behavior we consider sedimentation of eleven particles in a channel 2 cm wide and 8 cm tall.
The initial positions of the particles are shown in Fig. 4(a). We consider an Oldroyd B ¯uid
with a viscosity of 0.3 g/cm s, density of 1 g/cm3 and relaxation time of 3 s. Density of the
particles is 1.02 g/cm3 and their radius is 0.1 cm. The time step is 0.005 s and the mesh size is
same as that in Case C presented above. The Reynolds number �� rfVd=Z, where V is the
particle velocity and d is the particle diameter) for this case is 0.167 and the Deborah number
�� Vlr=d, where lr is the relaxation time of the ¯uid) is 3.75. This results in a viscoelastic
Mach number �� �������������

Re De
p

, where Re is the Reynolds number and De is the Deborah number)
equal to 0.79 and the elasticity number (=De/Re ) equal to 22.4. It was shown by Huang et al.
(1998) that particles in a viscoelastic ¯uid tend to chain when Mach number is less than 1 and
elasticity number is greater than 1. Fig. 4(b) shows the location of the particles at t � 20 s.
There is a tendency to form chains which is in agreement with the previous results. More
elaborate chain formation is expected from running this simulation for a long time in either a
periodic channel or a calculation domain that moves with the particles. Such simulations will
be focused in our future e�ort.

5. Conclusion

In this paper we have presented a new formulation of the Lagrange-multiplier-based
®ctitious-domain method for particulate ¯ow. In this approach, rigid motion is enforced by
requiring that the deformation rate tensor vanish at points occupied by rigid solids. This
formulation leads to a ®eld of Lagrange multipliers l for rigid motion analogous to the way
that pressure arises as a Lagrange multiplier for incompressibility. The new formulation is
implemented by modifying the DLM code for two-dimensional particulate ¯ows developed by
Singh et al. (1999). The code gives results which agree with the original DLM approach when
the densities do not match and with experiments.
The present algorithm requires no extra condition on the space of Lagrange multipliers when

the ¯uid and particle densities match. In this approach the particle translational and angular
velocities are not present in the combined equations of motion. This is especially convenient
for extending the method to a three-dimensional case with irregularly shaped bodies where
there is added complexity due to the nonlinear nature of the angular momentum equations.
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